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LElTER TO THE EDITOR 

Some exact solutions for the potential -r-' + 2Ar + 2A23 

R P Saxena and V S Varma 
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India 

Received 9 February 1982 

Abstract. We show how to obtain an infinite number of exact solutions for the excited 
states of an s-wave hydrogen atom with the polynomial perturbation 2Ar +2A2r2 for 
certain specific values of A. The energy eigenvalues in such cases satisfy E,, = 
-4+(2n +3)1A1 with the corresponding wavefunctions being given by products of 
exp(-lAlr/A -IAlr2) and polynomials of nth degree in r. 

The s-wave Hamiltonian for a hydrogen atom with a polynomial perturbation given by 

H =  d2 '+2Ar+2A2r2 
2 dr2 r dr  r 

was first studied by Killingbeck (1978) who pointed out that the system possesses an 
exact solution for the ground state for A > O  and that the Rayleigh-Schriidinger 
perturbation series for the ground-state energy in powers of A was not valid for A < 0. 
In a recent paper (Saxena and Varma 1982), we have explained why such a break- 
down is expected to occur and have constructed a perturbabion expansion for the 
ground-state energy in powers of IA 1-l" valid for A < 0 which gives good agreement 
with eigenvalues computed numerically. 

In this letter we wish to point out the existence of an infinite number of exact 
solutions for the excited states of the Hamiltonian (1) for certain specific values of 
the coupling A .  We do this separately for positive and negative A using a method 
which has recently been reported by one of us (Varma 1981). 

Case I. A > O  
In the Schrodinger equation corresponding to the Hamiltonian (1) we substitute the 
following ansatz for the wavefunction 

CO 

d ( r ) =  amim. 
m=O 

This leads to a three-term recursion relation for the coefficients given by 

(m+2)(m+3)am+2-2(m+l)a,+l+2[E+~-(2m+3)A]am =O. (3) 

In order that 4 ( r )  be an nth degree polynomial in r, it is necessary that 

E=-)+(2t1+3)A (4) 

0305-4470/82/050221+ 04$02.00 @ 1982 The Institute of Physics L221 



L222 letter to the Editor 

-4 12 
4(n - 2)A -6 20 0 

4(n -3)A -8 .  30 = 0. (6) 

0 ' 4 .  n ( n + l )  
4A ' -2n 

The structure of this determinant is such that for n = 21+ 1 or 21+2, it leads to a 
polynomial equation in A of degree 1 with only real and positive roots and therefore 
gives rise to I exact solutions. The excited state to which a particular solution $ ( r )  
belongs depends upon the number of nodes it possesses in the region O s r s m .  In 
table 1 we list the energy, the coefficients a, of the wavefunction, the value of A and 
the number of nodes of the exact solutions for 3 s n s 6. Note that one always has 
a.  = 1, al  = 0 and that for a given n, all a, = 0 for rn > n. Also, the wavefunctions 
listed are arbitrary up to an overall normalisation. 

This process can be continued for larger n but the algebra becomes progressively 
more tedious. 

Case II. A < 0 

We now use 

$ ( r )  = q5(r) exp(r+Ar2) 
(7) 

m=O 

which leads to the three-term recursion relation 

( m + 2 ) ( m + 3 ) a , + ~ + 2 ( r n + 3 ) a , + ~ + 2 [ E + ~ + ( 2 m + 3 ) A ] a ,  = O .  (8) 

The condition that d ( r )  be an nth degree polynomial in r now leads to the requirement 
that 

E = -$-(2n + 3 ) A  

and 

4 2 
-4nA 6 

-4(n - 

0 

6 0 
)A 8 12. 

* e .  n ( n + l )  
-4A * 2(n + 2) 
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For n =21-1 or 21, this determinant possesses I real and negative roots. The 
solutions for 1 6 n s 4 are listed in table 2. Note that one always has a. = 1 and al = -2. 

We conclude with two remarks. First, the substitution r + -r  in the Hamiltonian 
(1) leads to 

- 1 d 2  I d  1 2 2  H=------+--2Ar+2A r 
2 dr  r dr r 

which corresponds to a repulsive Coulomb potential with a polynomial perturbation. 
All eigenvalues of H are therefore also eigenvalues of fi provided the corresponding 
eigenfunctions J ( r )  = 4(-r) remain square integrable. Thus fi also possesses the 
exact ground-state solution go = -$+ 3A with J o ( r )  = exp(r - Ar2) for A > 0. Further 
each of the solutions listed in the tables is also a solution of fi after the replacement 
r -P -r. The particular excited states they correspond to depends upon the number of 
nodes of $(r )  = JI(-r) in the region 0 s r s 00. These are listed in the last rows of the 
tables. 

The second remark we wish to make is that apart from the inherent interest one 
has in the existence of exact solutions, the results reported here are likely to be useful 
in perturbation calculations for the excited-state energies, particularly if the method 
of Dalgarno and Lewis (1955) for evaluating second-order corrections can be extended 
to cover such cases. 
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